LMP8601: Amperímetro 0-5A (2)  

Cuando el pin Offset se coloca a la tensión de alimentación, en la salida del LMP8601 se obtiene una señal equivalente a la mitad de la alimentación (midrail) en una situación de circulación de corriente igual a cero. Si la corriente circula en un sentido, la tensión subirá hasta la tensión de alimentación y si se produce una inversión en la circulación de corriente, la tensión de salida tenderá a bajar hasta casi cero volts. En cambio, cuando el pin Offset se conecta a GND (ground - referenced) la salida de tensión obedecerá a la circulación de corriente en un solo sentido a través del shunt y variará entre 0 y la tensión de alimentación, de acuerdo al valor adoptado en el shunt.

   

 

Importante: Si lo que encuentras aquí te resulta útil,  ayúdanos a mantener este sitio. Cualquier donación es bienvenida. Tu apoyo nos permitirá acceder a nuevos materiales y a montajes más interesantes y útiles. Gracias por ayudarnos a hacer Servisystem cada día mejor. Tu ayuda será muy importante para nosotros. Gracias.

 


Ejemplo de circulación de la corriente en ambas direcciones a través del resistor Shunt
 
     

El mejor sistema de radiogoniometría para radioaficionados está a tu alcance. Constrúyelo!


 
El Tutorial de Televisión que ha ayudado a miles de técnicos de toda América a aprender cada día más del oficio


En la imagen superior vemos claramente una aplicación de circulación de corriente en ambos sentidos a través del shunt (Rsense). El circuito de medición de corriente está implementado para un cargador elemental de baterías. Mientras la batería esté en proceso de carga, la corriente circulará en un sentido y cuando el cargador deje de alimentar a la carga y a la batería, será ésta la que suministre la corriente de funcionamiento a la carga. De este modo, se invierte el sentido de circulación de corriente dentro del shunt. El resultado será una medición de 0 a ½ VCC para un sentido de circulación y de ½ VCC a VCC en el otro sentido.

Otra de las características importantes del LMP8601 es que nos permite trabajar con alimentaciones de 3,3 Volts o 5 Volts. Este beneficio nos abre la posibilidad de utilización del dispositivo en cualquier desarrollo, pudiendo introducir un amperímetro como un adicional muy útil para monitorear de forma continua y precisa la corriente consumida por cualquier etapa de nuestro proyecto. Además si sumamos este beneficio de alimentaciones amplias (3,3V y 5V) a la posibilidad de trabajar con diferencias de potencial de hasta 60 Volts entre las entradas, podemos darnos cuenta que estamos ante un circuito que puede implementarse como “nativo” en muchos diseños. Podemos agregar a todo lo dicho que el consumo propio del circuito en operación es de apenas 1 miliamper, y agregando la característica de su encapsulado 8pinSOIC, vemos en este circuito integrado un instrumento extraordinariamente útil, pequeño, versátil y preciso como para ser incorporado en cualquier trabajo donde se requiera un monitoreo constante de la corriente de trabajo.
 

 
     

Conexiones "Low Side" y "High Side" respectivamente
 


Llegando al final de las características destacables, podemos ver en la hoja de datos del LMP8601 la variedad de posibilidades de conexión que este circuito integrado nos brinda. Como vemos en la imagen y en la hoja de datos, la implementación puede efectuarse en diversas partes del circuito de carga adoptando así diferentes nombres las configuraciones empleadas (Low Side Current Sensing o High Side Current Sensing). Por supuesto que, como todo dispositivo que tiene la posibilidad de ser utilizado en ámbitos industriales, no debe ser menor la atención que se ponga al alimentar con tensión al mismo y colocarle un buen capacitor de 100nF de desacoplo. Esto es fundamental cuando se trabaja en ambientes eléctricamente ruidosos y también sería oportuno sumar un capacitor electrolítico de baja ESR (Resistencia Serie Equivalente) para minimizar los disturbios provocados por la EMI (Interferencias Electromagnéticas) y el ruido industrial.

En la imagen siguiente podemos ver un módulo fabricado para lograr un manejo cómodo del IC en un protoboard tal como se aprecia en los videos, con una terminación equivalente a un encapsulado DIL. En la parte superior puede notarse el capacitor de 100nF de desacoplo que mencionábamos anteriormente (color marrón), mientras que en la parte inferior se aprecia un puente (color verde) que conecta el pin 2 del IC a GND.
 

 
 
Módulo DIL para facilitar la manipulación del IC
 


Llegamos de esta forma a los dos puntos más elementales e importantes del uso e implementación del LMP8601. Por un lado el valor y la precisión del shunt a emplear en la entrada y por el otro lado, la exactitud de la alimentación del IC y del microcontrolador que se utilice para construir los sistemas de sensado de corrientes.

En lo que respecta al valor del shunt empleado vemos en las hojas de datos del IC que el valor adoptado no necesita ser un valor específico y único, sino que comprende una amplia variedad de posibilidades. Vemos ejemplos de aplicación donde se utilizan valores que van desde 0,01 Ohm hasta 10 Ohm. Esto es debido a la posibilidad del ajuste de ganancia que brinda el IC en la sumatoria de sus dos etapas. Nos encontramos entonces con salidas que varían entre 0,2V/Amper hasta valores de 1V/Amper según el valor óhmico del shunt empleado. Cuanto más preciso sea el valor de este resistor, menor será la complejidad del software que utilizaremos en el microcontrolador para obtener una medición tan fiel como sea posible. En nuestro caso no tuvimos la suerte de conseguir un valor exacto y comercial de resistor shunt por lo que debimos conformarnos con 4 resistencias de 0,22 Ohm, las que arrojaron un valor final y aproximado de 0,055 Ohm. Más adelante verás que la diferencia de 10% (0,05 a 0,055) se quita en el listado del programa de microcontrolador.
 

 



 mejor sistema de radiogoniometría para radioaficionados está a tu alcance. Constrúyelo!
 

Vista de nuestro Shunt formado por 4 resistencias de 0,22 Ohm
 


Por el lado de la exactitud en la alimentación cabe aclarar que el ADC (Convertidor Analógico Digital) de cualquier microcontrolador depende de dos posibles configuraciones. La primera es utilizando una referencia externa y de precisión como es el uso de un LM336 y la segunda es utilizando como referencia de tensión de entrada, la propia alimentación del circuito general. Esto último no es recomendable ya que pueden existir consumos variables dentro del funcionamiento del circuito (leds, backlight de un LCD, activación de drivers para relés, etc.) que hagan variar la tensión general y por consecuencia nuestras mediciones serán muy subjetivas y carentes de exactitud.
 

Importante: Si lo que encuentras aquí te resulta útil,  ayúdanos a mantener este sitio. Cualquier donación es bienvenida. Tu apoyo nos permitirá acceder a nuevos materiales y a montajes más interesantes y útiles. Gracias por ayudarnos a hacer Servisystem cada día mejor. Tu ayuda será muy importante para nosotros. Gracias.

 
 
     
  Página Anterior /// Página Siguiente